QUALITY DETERMINATION
OF PALM OILS

Prepared by:
Asosiasi Independent Surveyor Indonesia (AISI)
BASIC CONSIDERATIONS

A. Quality of Palm Oil produced by each Palm Oil Refinery is different, it depends on:
 * Variety of Oil Palm
 * Level of fruit ripening & smoothness of fruit transportation to the Refinery

B. Chemical components in Palm Oils are reactive with the surroundings & other substances

C. Quality of Palm Oils from the Plantation, Refinery, Storage and Sea or Land Transportation gradually change
CHEMICAL COMPONENTS OF CPO

MAIN COMPONENT (TRIGLYCERIDE ESTERS):
* Saturated medium & long chain fatty acids.
* Un-saturated medium & long chain fatty acids
* Majority of fatty acids: Palmitic, C₁₆; Oleic, C₁₈= and Linoleic, C₁₈=₂

MINOR COMPONENTS
* Tocopherols: anti-oxidant (Pro-vit. E)
* Beta carotene (Pro-vit. A = Anti cancer)

IMPURITIES
* Metals: Fe, Cu, Zn.
* Water & FFA.
* Various types of Solid particles.
<table>
<thead>
<tr>
<th>TYPE OF FATTY ACID</th>
<th>CPO</th>
<th>CPKO</th>
<th>COCONUT OIL</th>
<th>SOYABEAN OIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Octanoic, C8</td>
<td>2 - 4</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Decanoic, C10</td>
<td>3 - 7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Lauric, C12</td>
<td>1</td>
<td>41 - 55</td>
<td>48 - 56</td>
<td></td>
</tr>
<tr>
<td>4. Myristic, C14</td>
<td>1 - 12</td>
<td>14 - 19</td>
<td>17</td>
<td>0.1</td>
</tr>
<tr>
<td>5. Palmitic, C16</td>
<td>32 - 47</td>
<td>6 - 10</td>
<td>9</td>
<td>10.5</td>
</tr>
<tr>
<td>6. Stearic, C18</td>
<td>4 - 10</td>
<td>1 - 4</td>
<td>2</td>
<td>3.2</td>
</tr>
<tr>
<td>7. Oleic, C18=1</td>
<td>38 - 50</td>
<td>10 - 20</td>
<td>6</td>
<td>22.3</td>
</tr>
<tr>
<td>8. Linoleic, C18=2</td>
<td>5 -14</td>
<td>1 - 5</td>
<td>3</td>
<td>54.5</td>
</tr>
<tr>
<td>9. Linolenic, C18=3</td>
<td>1</td>
<td>1 - 5</td>
<td>8.3</td>
<td></td>
</tr>
</tbody>
</table>
CHEMISTRY OF TRIGLYCERIDE ESTER

1. SATURATED FATTY ACIDS (R-COOH)

<table>
<thead>
<tr>
<th>No.</th>
<th>Number of C</th>
<th>Formal name</th>
<th>Trivial name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>C1</td>
<td>Methanoic acid</td>
<td>Formic acid</td>
</tr>
<tr>
<td>2.</td>
<td>C2</td>
<td>Ethanoic acid</td>
<td>Acetic acid</td>
</tr>
<tr>
<td>3.</td>
<td>C3</td>
<td>Propanoic acid</td>
<td>Propionic acid</td>
</tr>
<tr>
<td>4.</td>
<td>C4</td>
<td>Butanoic acid</td>
<td>Butyric acid</td>
</tr>
<tr>
<td>5.</td>
<td>C5</td>
<td>Pentanoic acid</td>
<td>Valeric acid</td>
</tr>
<tr>
<td>6.</td>
<td>C6</td>
<td>Hexanoic acid</td>
<td>Caproic acid</td>
</tr>
<tr>
<td>7.</td>
<td>C10</td>
<td>Decanoic acid</td>
<td>Capric acid</td>
</tr>
<tr>
<td>8.</td>
<td>C12</td>
<td>Dodecanoic acid</td>
<td>Lauric acid</td>
</tr>
<tr>
<td>9.</td>
<td>C14</td>
<td>Tetradecanoic acid</td>
<td>Myristic acid</td>
</tr>
<tr>
<td>10.</td>
<td>C16</td>
<td>Hexadecanoic acid</td>
<td>Palmitic acid</td>
</tr>
<tr>
<td>11.</td>
<td>C18</td>
<td>Octadecanoic acid</td>
<td>Stearic acid</td>
</tr>
<tr>
<td>12.</td>
<td>C20</td>
<td>Eicosanoic acid</td>
<td>Arachidic acid</td>
</tr>
<tr>
<td>13.</td>
<td>C22</td>
<td>Docosanoic acid</td>
<td>Behenic acid</td>
</tr>
</tbody>
</table>
Continued

2. UNSATURATED FATTY ACIDS (Double C bonds)

a. Caproleic acid, C10 =1
b. Lauroleic acid, C12 =1
c. Myristoleic acid, C14 =1
d. Palmitoleic acid, C16 =1
e. Oleic acid, C18 =1
f. Linoleic acid, C18 =2
g. Linolenic acid, C18 =3
PALM OILS REACTIVITY/SENSITIVITY - 01

A. HYDROLYSIS X ESTERIFICATION:
 * Triglyceride ester + Water \rightarrow Glycerol + FFA

B. REACTION with BASE (viz. Caustic soda):
 * Produces SOAP (Saponification)
 * Neutralization of the FFA

C. HYDROGENATION OF DOUBLE BONDS
 * Hydrogen saturation.
D. OXIDATION or HYDROLYSIS OF DOUBLE BONDS.

* Primary Oxidation produces Hydro-peroxide :
 - The peroxide can be substituted by I₂ (Iodine)
 \[
 \text{C} = \text{C} + \bigOX \rightarrow \text{C} = \text{O} \quad \text{or} \quad \text{CH}=\text{O}
 \]
* Secondary Oxidation produces Ketones or Aldehydes
 = Rancid odour

E. FFA + METAL (Fe, Zn, Cu, Mn, Ni etc):

\[
\text{RCOOH} + \text{M} \rightarrow \text{M}^+ + \text{RCOO}^- + \text{H}_2\uparrow
\]

* Produces Cathion/ Salt and Hydrogen gas.
* Pro-oxidant metals can accelerate Oxidation process
CONTAMINATION & QUALITY DETERIORATION of PALM OILS

A. OXIDATIVE RANCIDITY
 - Accelerated by overheating, pro-oxidative metals (Fe, Cu, Zn, Mn, Ni), UV light, direct contact with O2.

B. HYDROLYSIS
 - Accelerated by acids, emulsifier, Phosphorous, lipolytic enzyme, soap forming agent.

C. CROSS CONTAMINATION
 - Contamination by PO with different grade

D. CONTAMINATION BY FOREIGN SUBSTANCE
 - Metals, toxic materials, coating, tank & accessories materials, previous cargoes, sea water etc.
PALM OIL SPECIFICATION
(Typical: Indonesian Government)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CPO</th>
<th>CPKO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Free Fatty Acid, % max</td>
<td>5</td>
<td>3.5</td>
</tr>
<tr>
<td>2. Volatile matters, % max</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>3. Moisture & Imp., % max</td>
<td>0.5</td>
<td>0.02</td>
</tr>
<tr>
<td>4. Peroxide Value, meq max</td>
<td>6</td>
<td>2.2</td>
</tr>
<tr>
<td>5. Iodine Value, mg/gr</td>
<td>44 - 58</td>
<td>10.5 -18.5</td>
</tr>
<tr>
<td>6. Metal (Fe, Cu), ppm</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7. Lovibond, R</td>
<td>3 - 4</td>
<td></td>
</tr>
</tbody>
</table>
MEANING OF THE FOLLOWING PARAMETERS

1. FFA: - indicates degree of hydrolysis

2. Moisture & Impurities: - potential of further hydrolysis

3. Iodine Value: - indicates %-age of Unsaturated FA (capacity of oxidation)

4. Peroxide Value: - indicates degree of primary oxidation (oxidized double C bonds).
5. Saponification Value: - Indicates fatty acids content (lower mol weight higher Sap. Value (in mg KOH/gr oil)).

6. Unsaponifiable matters: - Indicates non-ester that dissolves in oil, but not in water, viz.: sterols, tocopherols etc.
 - In vegetable oil ranges 0.1 – 2.5%

7. Cloud Point: - Indicates solidifying substances.
 - Palm olein with IV : 56, Cloud point max. 10 deg. C.

8. Slip Melting Point: - Indicates degree of fineness of fat by capillary flow.

9. DOBI/DF: - Indicates level of oxidation (primary & secondary)
ADDITIONAL SPECIFICATION FOR CPO

(special for CPO)

<table>
<thead>
<tr>
<th>DOBI</th>
<th>DISC. FACTOR</th>
<th>GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 1.68</td>
<td>Below 0</td>
<td>Sludge oil</td>
</tr>
<tr>
<td>1.68 – 2.30</td>
<td>1 - 10</td>
<td>Poor</td>
</tr>
<tr>
<td>2.31 - 2.92</td>
<td>11 - 20</td>
<td>Fair</td>
</tr>
<tr>
<td>2.93 – 3.24</td>
<td>21 - 25</td>
<td>Good</td>
</tr>
<tr>
<td>3.24 and upper</td>
<td>25 and upper</td>
<td>Excellent</td>
</tr>
</tbody>
</table>
A. DETERMINATION OF OIL CONTENT & MOISTURE :
- Extraction by using Soxlet App. with solvent, Chloroform, CCl4 or CS2
- Weighing of the Extract phase before and after evaporation :

\[
\text{OIL CONTENT} = \left[\frac{(B - A)}{\text{SAMPLE WEIGHT}} \right] \times 100\%
\]

B. DETERMINATION OF ACID VALUE :
- 10 – 20 gram of Oil/ Fat is dissolved in 50 neutral Alcohol 96% and heated.
- Titration by using KOH 0.1 N :

\[
\text{ACID VALUE} = \left[\frac{V_i \times N_i \times 56.1}{56.1} \right] \text{(mg KOH/ gr of sample)}
\]

\[
\text{ACID VALUE, %} = \left[\frac{M_{Wo} \times V_i \times N_i}{10 \text{ gr Sample}} \right] \times \% \text{ mole}
\]

Remarks : - MW of Coconut Oil = 205, Palm Oil = 263; Acid = 282
C. DETERMINATION OF SAPONIFICATION VALUE.

- 4 – 5 gram of Oil/ Fat + 50 ml KOH 0.5 N with Alcohol.
- Titration of Blank and Sample with HCl 0.5 N and using PP as indicator.

\[
\text{SAPONIFICATION VALUE} = \left[\frac{(A - B)}{\text{gr of Sample}} \right] \times 28.05
\]

- A, B : ml of HCl 0.5 N of Blank test and Sample
- 28.05 : half of MW of KOH

D. DETERMINATION OF UNSAPONIFIABLE VALUE:

- 5 gram of Oil/ Fat + 30 ml of Alcohol 95% + 5 ml of KOH 50%
- Add with 50 ml of Petroleum Ether for flushing.

Extract and then evaporated and the residue is weighed accurately.

\[
\text{UNSAPONIFIABLE VALUE} = \left[\frac{(W \text{ resd.} - W \text{ fatty acid})}{W \text{ sample}} \right] \times 100\%
\]
E. DETERMINATION OF IODINE VALUE

- 0.1 – 0.5 gram of Oil/ Fat + 20 ml CCl₄ as a solvent
- Add 25 ml of Wijs solution in excess
- Add 20 ml of KI 15% and 100 ml of water
- Titration with 0.1 N Na₂S₂O₃ for Blank test and Sample.

\[
\text{IODINE VALUE} = \left[\frac{(B - S)}{W \times N \times 12.69} \right]
\]

- B, S : ml of Na₂S₂O₃ for Blank and Sample test
- N : Normality of Na₂S₂O₃ solution
- W : Weight of Sample, gram
- 12.69 : MW of Iodium/ 10
TYPICAL
IODINE VALUE & PEROXIDE VALUE OF VEGETABLE OILS

1. IODINE VALUE:
 a. CPO : 50 - 54
 b. CPKO : 16 - 19
 c. Palm Olein : 56 - 60
 d. Palm Stearin : 27 - 45
 e. Soybean oil : 120 - 141
 f. Corn oil : 103 - 128

2. PEROXIDE VALUE:
 a. Fresh refined oil : PV max. 1.0
 b. Refined Bleached oil : PV approx. 0
TYPICAL SPEC. OF PROCESSED PALM OIL
(PORAM STANDARD SPECIFICATION)

A. NEUTRALISED PALM OIL:
 - FFA (as Palmitic) : 0.25% max.
 - M & I : 0.10% max.
 - Iodine Value : 50 – 55
 - Melting point : 33 – 39 deg. C

B. RBD/ NBD PALM OIL:
 - FFA (as Palmitic) : 0.25% max.
 - Iodine Value : 50 – 55
 - M & I : 0.10% max.
 - Melting point : 33 – 39 deg. C
 - Colour : 20 Red max.
Continued

C. NEUTRALISED PALM OLEIN:
 - FFA (as Palmitic) : 0.25% max.
 - M&I : 0.10% max.
 - Iodine Value : 56 min.
 - Melting point : 24 deg. C max.

D. NEUTRALISED & BLEACHED PALM STEARIN:
 - FFA (as Palmitic) : 0.25% max.
 - M & I : 0.15% max.
 - Iodine Value : 48 min.
OLEOChemicals

A. Basic Oleochemicals: (5 groups)
 a. Fatty acids: plastics, soap, cosmetics, dyes, lube
 b. Fatty esters: cosmetics, detergents
 c. Fatty alcohols: fuel additives, cosmetics, detergent
 d. Fatty amines: conditioners, textile, additives
 e. Glycerol: explosives, cosmetics, tooth paste

B. Oleochemical Derivatives
 - Derivates of Basis Oleochemicals: methyl ester, medium chain triglycerides, sulphate of fatty ester etc.
HANDLING OF PALM OIL

A. PREVENTION OF CONTAMINATION
 a. Dryness & cleanliness of the surface & atmosphere
 b. Oxygen removal (injected with nitrogen)
 c. Anti-oxidant (Citric acid, BHA, BHT, TBHQ)
 d. Suitable materials (tank material, coating, interior etc)

B. RECOMMENDED TEMPERATURES & HEATING (IASC)
 (for lowering self quality deterioration)
 a. Min – max temperature of transit/ loading, storage and discharge.
 b. Rate of heating max. 5 deg C per day.
 c. Alcohol column thermometer is recommended (mercury is strictly prohibited).
Continued

C. PREVIOUS CARGOES (revised annually)
 a. More refined products is acceptable.
 b. FOSFA List of Acceptable previous cargoes: acceptable when effective tank cleaning is applied.
 c. FOSFA List of Banned immediate previous cargoes:
 - Leaded cargoes: 3 previous cargoes
 - Proper tank cleaning is not sufficient
<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>DISCH. TEMP. Deg C</th>
<th>STORAGE & TRANSIT TEMP. Deg C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Palm oil (Crude & Processed)</td>
<td>50 - 55</td>
<td>32 - 40</td>
</tr>
<tr>
<td>2. Palm olein</td>
<td>30 - 35</td>
<td>25 - 30</td>
</tr>
<tr>
<td>3. Palm stearin (crude – processed)</td>
<td>55 – 60 65 - 70</td>
<td>40 - 45</td>
</tr>
<tr>
<td>4. Palm mid fraction</td>
<td>40 - 45</td>
<td>35 - 40</td>
</tr>
<tr>
<td>5. Palm kernel oil</td>
<td>30 - 35</td>
<td>27 - 32</td>
</tr>
</tbody>
</table>
ANTI – OXIDANT (ADDITIVES)

1. CITRIC ACID (= Asam sitrat)
2. BHA : Butylated Hydroxyl Anisole
3. BHT : Butylated Hydroxyl Toluene
4. TBHQ : Tertiary Butyl Hydroquinone

SUITABLE MATERIALS

1. TANK MAT’L : - Stainless steel and free of Copper or Copper alloy, other heavy metal & metal oxides, incl. rust, lose scale etc.
2. COATING : - Zinc rich coating is strictly prohibited.
 - Epoxy, Polyurethane are suitable
THANK YOU